摘要:应用钢的强韧化设计和金属学原理的相关理论,本文相当详尽地分析了H13钢的化学成分及其对钢的组织结构和性能的影响,同时阐明了近年来国内外对H13钢成分的改进和发展方面的工作,旨在促进人们能更进一步开展开发、制造和处理H13钢的研究。
关键词:H13钢,化学成分,显微组织,工具钢设计
On the Chemical Composition of H13 Hot Work Tool Steel and It’s Development
PAN Xiaohua, ZHU Zuchang
Abstract:
In this paper the authors apply relative theories of alloy steel design for strengthening and toughening and principles of physical metallurgy to the analyses in some detail of the chemical compositions of H13 hot work tool steel and the effects of the ones upon the microstructures and properties. In the next place we explain the improvement and development on the chemical composition in recent years. The purpose is in order to better prompt an investigation into the development, manufacture as well as heat treatment of H13 steel.
Keyword: h13 steel, chemical composition, microstructure, tool steel design
1.前言
热作模具钢要求材料具有高的淬透性、高的高温强度、高的耐磨性、高的韧度、高的抗热裂能力和高的耐熔损性能等。在美国,热作模具钢分为三种:铬热作模具钢、钨热作模具钢和钼热作模具钢,都冠以H字母,分别表示为H10~H19、H21~H26和H42、H43等。其中前两种钢的含碳量在(0.30~0.50)﹪范围,后种钢的含碳量在(0.50~0.70)﹪范围内,三种钢的Cr、W、Mo和V合金元素的总含量在(6~25)﹪范围。
H13钢是使用最广泛和最具代表性的热作模具钢种,它的主要特性是[1]:(1)具有高的淬透性和高的韧性;(2)优良的抗热裂能力,在工作场合可予以水冷;(3)具有中等耐磨损能力,还可以采用渗碳或渗氮工艺来提高其表面硬度,但要略为降低抗热裂能力;(4)因其含碳量较低,回火中二次硬化能力较差;(5)在较高温度下具有抗软化能力,但使用温度高于540℃(1000℉)硬度出现迅速下降(即能耐的工作温度为540℃);(6)热处理的变形小;(7)中等和高的切削加工性;(8)中等抗脱碳能力。更为令人注意的是,它还可用于制作航空工业上的重要构件。
航空及宇航工业发展要求其构件采用具有高强度、高韧度和高屈强比的材料,人们已经知道[2],钢铁材料要能与钛合金相竞争,其拉伸强度必须达到1600~1700MPa,其断裂韧度KIC≥125MPa√m 的水平。对飞行器,随飞行速度与音速的比值(称为马赫数,Ma,)的增加,要求构件能承受500℃或更高温度的能力,为此须采用具有二次硬化能力的钢材。人们正是从热作模具钢受到启发,将之作为一种超高强度钢加以应用和开展相当类型的超高强度钢的研究。
本文将结合钢的强韧化理论和金属学原理来对H13钢的化学成分进行分析,并阐明目前在国际上其发展的概況。由于篇幅所限,关于本文中涉及的更详尽技術资料可以登陆我们公司网站 www.hefchina.com.cn 搜索。
2. H13钢的化学成分的分析
H13钢是C-Cr-Mo-Si-V型钢,在世界上的应用极其普遍,同时各国许多学者对它进行了广泛的研究,并在探究化学成分的改进。钢的应用广泛和具有优良的特性,主要由钢的化学成分决定的。当然钢中杂质元素必须降低,有资料表明,当Rm在1550MPa时,材料含硫量由0.005%降到0.003%,会使冲击韧度提高约13 J[2]。十分明显,NADCA 207-2003标准就规定:优级(premium)H13钢含硫量小于0.005%,而超级(superior)的应小于0.003%S和0.015%P。下面对H13钢的成分加以分析。
2.1 碳:美国AISI H13,UNS T20813,ASTM(最新版)的H13和FED QQ-T-570的H13钢的含碳量都规定为(0.32~0.45)%,是所有H13钢中含碳量范围最宽的。德國X40CrMoV5-1和1.2344的含碳量为(0.37~0.43)%,含碳量范围较窄,德國DIN17350中还有X38CrMoV5-1的含碳量为(0.36~0.42)%[3]。日本SKD 61的含碳量为(0.32~0.42)%[3,4]。我国GB/T 1299和YB/T 094中4Cr5MoSiV1和SM 4Cr5MoSiV1的含碳量为(0.32~0.42)%和(0.32~0.45)%,分别与SKD61和AISI H13相同。特别要指出的是:北美压铸协会NADCA 207-90[5]、207-97[6]和207-2003[7]标准中对H13钢的含碳量都规定为(0.37~0.42)%。
钢中含碳量决定淬火钢的基体硬度,按钢中含碳量与淬火钢硬度的关系曲线可以知道,H13钢的淬火硬度在55HRC左右[8]。对工具钢而言,钢中的碳一部分进入钢的基体中引起固溶强化。另外一部分碳将和合金元素中的碳化物形成元素结合成合金碳化物。对热作模具钢,这种合金碳化物除少量残留的以外,还要求它在回火过程中在淬火马氏体基体上弥散析出产生两次硬化现象。从而由均匀分布的残留合金碳化合物和回火马氏体的组织来决定热作模具钢的性能。由此可见,钢中的含C量不能太低。
含5%Cr的H13钢应具有高的韧度,故其含C量应保持在形成少量合金C化物的水平上。Woodyatt 和Krauss[9]指出在870℃的Fe-Cr-C三元相图上,H13钢的位置在奥氏体A和(A+M3C+M7C3)三相区的交界位置处较好。相应的含C量约0.4%(见图1)[9]。图上还标出增加C或Cr量使M7C3量增多,具有更高耐磨性能的A2和D2钢以作比较。另外重要的是,保持相对较低的含C量是使钢的Ms点取于相对较高的温度水平(H13钢的Ms一般资料介绍为340℃左右),使该钢在淬冷至室温时获得以马氏体为主加少量残余A和残留均匀分布的合金C化物组织,并经回火后获得均匀的回火马氏体组织。避免使过多残余奥氏体在工作温度下发生轉变影响工件的工作性能或变形。这些少量残余奥氏体在淬火以后的两次或三次回火过程中应予以转变完全[2]。这儿顺便指出,H13钢淬火后得到的马氏体组织为板条M+少量片状M+少量残余A。经回火后在板条状M上析出的很细的合金碳化物的照片可见图2[9],国内学者也作了一定工作[14]。
图1 Fe-Cr-C系870℃水平截面部分相图
点击此处查看全部新闻图片
图2 H13钢淬火回火的TEM组织
点击此处查看全部新闻图片
众所周知,钢中增加碳含量将提高钢的强度,对热作模具钢而言,会使高温强度、热态硬度和耐磨损性提高,但会导致其韧度的降低。学者在工具钢产品手册文献[11]中将各类H型钢的性能比较很明显证明了这个观点。通常认为导致钢塑性和韧度降低的含碳量界限为0.4%。为此要求人们在钢合金化设计时遵循下述原则:在保持强度前提下要尽可能降低钢的含碳量,有资料已提出:在钢抗拉强度达1550MPa以上时,含C量在0.3%-0.4%为宜[2]。H13钢的强度Rm,有文献介绍为1503.1MPa(46HRC时)和1937.5MPa(51HRC时)。